首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15336篇
  免费   1461篇
  国内免费   1526篇
电工技术   305篇
综合类   1313篇
化学工业   3646篇
金属工艺   1833篇
机械仪表   749篇
建筑科学   207篇
矿业工程   154篇
能源动力   143篇
轻工业   543篇
水利工程   41篇
石油天然气   256篇
武器工业   242篇
无线电   3938篇
一般工业技术   3211篇
冶金工业   694篇
原子能技术   205篇
自动化技术   843篇
  2024年   35篇
  2023年   283篇
  2022年   359篇
  2021年   512篇
  2020年   457篇
  2019年   421篇
  2018年   407篇
  2017年   506篇
  2016年   477篇
  2015年   512篇
  2014年   751篇
  2013年   889篇
  2012年   994篇
  2011年   1080篇
  2010年   751篇
  2009年   936篇
  2008年   826篇
  2007年   1014篇
  2006年   1060篇
  2005年   930篇
  2004年   763篇
  2003年   612篇
  2002年   584篇
  2001年   473篇
  2000年   397篇
  1999年   328篇
  1998年   275篇
  1997年   237篇
  1996年   228篇
  1995年   213篇
  1994年   200篇
  1993年   166篇
  1992年   140篇
  1991年   133篇
  1990年   102篇
  1989年   61篇
  1988年   45篇
  1987年   20篇
  1986年   17篇
  1985年   28篇
  1984年   21篇
  1983年   15篇
  1982年   24篇
  1980年   6篇
  1979年   6篇
  1977年   5篇
  1976年   4篇
  1975年   4篇
  1974年   6篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
In the era of digitalization, there are many emerging technologies, such as the Internet of Things (IoT), Digital Twin (DT), Cloud Computing and Artificial Intelligence (AI), which are quickly developped and used in product design and development. Among those technologies, DT is one promising technology which has been widely used in different industries, especially manufacturing, to monitor the performance, optimize the progresses, simulate the results and predict the potential errors. DT also plays various roles within the whole product lifecycle from design, manufacturing, delivery, use and end-of-life. With the growing demands of individualized products and implementation of Industry 4.0, DT can provide an effective solution for future product design, development and innovation. This paper aims to figure out the current states of DT research focusing on product design and development through summarizing typical industrial cases. Challenges and potential applications of DT in product design and development are also discussed to inspire future studies.  相似文献   
72.
In this Letter, we demonstrate that the spontaneous nanophase-separation can greatly enhance the heterogeneous nucleation in the investigated phosphosilicate melts. The two separated phases are found to be the phosphate-rich phase as the floppy domain and the silicate-rich phases as rigid phase. We found that sodium phosphate nanocrystals form in the phosphate-rich phase during melt cooling. The growth of these nanocrystals are self-limited, i.e., limited by the surrounding silicate-rich phase with higher viscosity, and hence lower ionic diffusion compared to the phosphate-rich phase. Our results show that the substitution of B2O3 or Al2O3 for partial Na2O enhances the spontaneous nucleation, although the viscosity of silicate-rich matrix phase is increased by such substitution. This implies that the compositional substitution enhances nanophase separation and thereby lowers the activation energy for non-isothermal crystallization. This work indicates that nanophase separation is crucial for fabrication of transparent glass-ceramics from phosphosilicate melts.  相似文献   
73.
Interfacial hydrophobic/hydrophilic reaction fields significantly affect various reactions at the electrode surface. The hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR) have been investigated on single crystal Pt electrodes modified with hydrophobic/hydrophilic cations and anion-exchange copolymers in alkaline solutions. In alkali metal hydroxide solutions, Pt (110) exhibits the highest HER/HOR activity in the low-index planes of Pt. On the low-index planes of Pt, the hydrophilicity of the alkali metal cation in the supporting electrolyte activates the HER/HOR depending on its hydration energy. Hydrophilic cations at the interface facilitate the extraction of hydrogen from the hydrated water. The modification of anion-exchange copolymers with a hydrophobic skeleton on Pt (110) further enhanced the HER/HOR activity. The hydrogen bonding network formed around the hydrophobic species facilitated the mobility of water molecules and the OH as the reactant/product of the HER/HOR. Appropriately forming hydrophilic and hydrophobic reaction fields at the interface improved the HER/HOR activity.  相似文献   
74.
《Ceramics International》2019,45(12):15015-15024
Constant- and varied-depth nanoscratching tests of GGG single crystal were carried out at different scratching velocities. The morphologies of the scratched grooves and chips were analysed using scanning electron microscope. The experimental results indicated that higher scratching velocity led to shallower penetration depth, shallower residual depth, and larger continuous chips. Increasing the scratching velocity could effectively improve the plasticity and reduce the brittle-to-ductile transition depth of GGG single crystal. Based on the contact stress and contact area between the analysed sample and Berkovich indenter, a model for predicting the penetration depth was developed, which took into account the strain rate effect and elastic recovery of materials. The model was verified using constant- and varied-depth nanoscratching tests, and the predicted and experimental results were in good agreement. Subsurface damage underneath the ductile surface was characterised using transmission electron microscope. The TEM results demonstrated that higher scratching velocity led to the slipping planes appearing in more directions, which prevented the generation of long slipping plane and reduced the depth of the damage layers. The plastic deformation of GGG at the scratching velocity of 100 μm/s was dominated by poly-crystalline nanocrystallites and amorphous phases, and was similar to that at the low scratching velocity. This study provided a fundamental understanding of the strain-rate dependence of surface/subsurface deformation mechanisms of GGG during ultra-precision machining.  相似文献   
75.
Internal stress and stress-related defects are considered as the major obstacles that significantly hinder the growth of high-quality ZnO-based crystals. In this work, high-crystalline-quality ZnO:Zn bulk crystals were successfully grown by carbon-assisted chemical vapor transport (CVT). Internal stress in the crystal was directly measured by a neutron beam from a reactor, and stress distributions along the radial direction at different depths were obtained. The stress, temperature, and flow fields in the growth system were simulated by the finite element (FE) method, and the results agreed with the neutron stress analysis. The etch pit density (EPD), Hall properties, and optical transmittances of different crystal regions were studied in detail, and the distribution trend of the crystal properties was consistent with that of internal stress and stress-related defects in the crystal. It is found that the unique temperature filed in the growth system causes the crystal to bend to a slightly convex toward the growth direction and gives rise to a driving force for structural defect formation. The + c and –c faces of the crystal are subjected to tensile and compressive stress, respectively. The maximum stress values are about 280 MPa and -291 MPa near the central regions of ±c faces, while the crystal periphery is basically free of internal stress. The region near the center of +c face has an EPD of 7.5 × 103 cm-2 and a transmittance of 79.2% at 800 nm wavelength, while the corresponding carrier concentration and mobility are 2.27 × 1017 cm?3 and 159 cm2/V·s, respectively. By comparison, the crystal periphery has an EPD of 102 cm-2 with an 80.5% transmittance at 800 nm, while the carrier concentration and mobility are 1.85 × 1017 cm?3 and 184 cm2/V·s, respectively.  相似文献   
76.
The jerky motion of twin boundaries in the ferromagnetic shape memory alloy Ni-Mn-Ga is studied by simultaneous measurements of stress and magnetic emissions (ME). A careful design of the experimental conditions results in an approximately linear relationship between the measured ME voltage and the nm-scale volumes exhibiting twinning transformation during microsecond-scale abrupt “avalanche” events. This study shows that the same distributions of ME avalanches, related to features of jerky twin boundary motion, are found both during and between stress drop events. Maximum likelihood analysis of statistical distributions of several variables reveals a good fit to power laws truncated by exponential functions. Interestingly, the characteristic cutoffs described by the exponential functions are in the middle of the distribution range. Further, the cutoff values can be related to the physical characteristics of the studied problem. Particularly, the cutoff of amplitudes of ME avalanches matches the value predicted by high rate magnetic pulse tests performed under much larger driving force values. This observation implies that avalanches during slow rate twin boundary motion and velocity changes observed by high rate tests represent the same behavior and can be described by the same theory.  相似文献   
77.
《Ceramics International》2022,48(21):31811-31817
As one of the outstanding piezoelectric materials, relaxor-PbTiO3 single crystal also exhibits promising electro-optic and nonlinear-optic properties. Therefore, it is vital to understand the domain switching kinetics not only for optimizing strain-mediated devices performance but also for fabricating optical waveguides and periodic domain structures in optical applications. In this work, domain switching kinetics in annealed and pre-poled PMN-0.38PT single crystal under different external electric field were studied. Polarization reversal can be accomplished only by c-domain nucleation and growth in the annealed sample where the formation of the ferroelastic domains is hindered. In pre-poled sample, 90° domain switching happened by 90° domain wall reorientation under low electric field while 180° domain switching is accomplished by two-step 90° domain switching and c-domain growth under high electric field. The results are important for modulating domain structure for strain mediated and optical devices.  相似文献   
78.
Understanding surface kinetics of SiO2 growth on single crystal SiC at elevated temperatures is crucial to fabricate high-performance SiC-based devices. However, the role of oxygen in the evolution mechanism of SiC surface at atomic scale has not been comprehensively elaborated. Here, we reveal the manipulation effect of oxygen on the competitive growth of thermal oxidation SiO2 (TO-SiO2) and thermal chemical vapor deposition SiO2 (TCVD-SiO2) on the 4H-SiC substrate at 1500 °C. TO-SiO2 is formed by the thermal oxidation of SiC, in which the substrate undergoes layer-by-layer oxidation, resulting in an atomically flat SiC/TO-SiO2 interface. TCVD-SiO2 growth includes the sublimation of Si atoms, the reaction between sublimated Si atoms and reactive oxygen, and the adsorption of gaseous SixOy species. A relatively high sublimation rate of Si atoms at SiC atomic steps causes the transverse evolution of the nucleation sites, leading to the formation of nonuniform micron-sized pits at the SiC/TCVD-SiO2 interface. The low oxygen concentration favors TCVD-SiO2 growth, whose crystal quality is much better than that of TO-SiO2 due to the high surface mobility in the thermal CVD process. We further achieve the epitaxial growth of graphene on 4H-SiC in an almost oxygen-free reaction atmosphere. Additionally, ReaxFF reactive molecular dynamic simulation results illustrate that the decrease in oxygen concentration can promote the growth kinetics of SiO2 on single crystal SiC from being dominated by thermal oxidation to being dominated by thermal CVD.  相似文献   
79.
为了研究主梁腹板纵桥向翘曲变形对横梁内力的影响,在现有横梁框架模型基础上,根据符拉索夫薄壁结构理论得到集中荷载作用下简支曲线双工字钢组合梁桥翘曲变形、结构扭转角等物理参数沿跨径的分布规律。利用主梁腹板与横梁的变形协调关系分析横梁的纵桥向变形,得到横梁内力组成以及截面正应力分布规律并进行有限元分析验证。结果表明:基于符拉索夫薄壁结构理论分析得到的横梁截面正应力分布规律与有限元计算得到的规律基本一致; 靠近加载点的横梁正应力以“竖向弯曲效应”为主导,靠近支座截面的横梁“腹板变形不一致效应”大于加载点截面附近横梁; 加载点截面两侧腹板翘曲变形方向相反,导致横梁的截面正应力分布规律相反; 横梁竖向弯曲变形产生的应力与主梁弯矩分布规律类似,纵桥向弯曲变形产生的应力与扭率分布规律类似。  相似文献   
80.
The developed knowledge regarding use of twin screw granulators for continuous wet granulation has been primarily limited to immediate release formulations in the literature. The present study highlights an issue previously unreported for wet granulation with twin screw extruders when using formulations containing controlled-release (CR) excipients. Long (3–10?mm), twisted noodle-like granules can be produced in the presence of these excipients that are difficult to control and are anticipated to create complications in downstream unit operations to the granulator. Working with two different CR excipients, METHOCEL? K4M and Kollidon® SR, each blended at different ratios with a mixture of 80% α-lactose monohydrate/20% microcrystalline cellulose, these unique particles were found to be produced in the conveying elements of the extruder, arising from a rolling action at the top of the screw flights. The CR excipients adhesively strengthen the wetted mass, forming this undesired granule shape such that they persisted to the exit of the machine; the shape appeared most strongly affected by screw speed, producing particles of higher aspect ratio as speed was increased. Adjusting the concentration of these CR excipients in the formulation, the flow rate or the type of compression element used in the screws proved ineffective in controlling the problem. Rather, a re-design of the extruder screws was required to prevent generation of these extended-form granules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号